Vertical Federated Learning (VFL) is an emergent distributed machine learning paradigm wherein owners of disjoint features of a common set of entities collaborate to learn a global model without sharing data. In VFL, a host client owns data labels for each entity and learns a final representation based on intermediate local representations from all guest clients. Therefore, the host is a single point of failure and label feedback can be used by malicious guest clients to infer private features. Requiring all participants to remain active and trustworthy throughout the entire training process is generally impractical and altogether infeasible outside of controlled environments. We propose Decoupled VFL (DVFL), a blockwise learning approach to VFL. By training each model on its own objective, DVFL allows for decentralized aggregation and isolation between feature learning and label supervision. With these properties, DVFL is fault tolerant and secure. We implement DVFL to train split neural networks and show that model performance is comparable to VFL on a variety of classification datasets.
翻译:暂无翻译