Variational training of parameterized quantum circuits (PQCs) underpins many workflows employed on near-term noisy intermediate scale quantum (NISQ) devices. It is a hybrid quantum-classical approach that minimizes an associated cost function in order to train a parameterized ansatz. In this paper we adapt the qualitative loss landscape characterization for neural networks introduced in \cite{goodfellow2014qualitatively,li2017visualizing} and tests for connectivity used in \cite{draxler2018essentially} to study the loss landscape features in PQC training. We present results for PQCs trained on a simple regression task, using the bilayer circuit ansatz, which consists of alternating layers of parameterized rotation gates and entangling gates. Multiple circuits are trained with $3$ different batch gradient optimizers: stochastic gradient descent, the quantum natural gradient, and Adam. We identify large features in the landscape that can lead to faster convergence in training workflows.
翻译:参数化量子电路(PQCs)的多样化培训支持了近期噪音中等规模量子装置(NISQ)使用的许多工作流程。这是一种混合量子古典方法,最大限度地减少相关成本功能,以便培训一个参数化的 ANsatz。在本文中,我们调整了在\cite{goodfellow2014qualitive,li2017视觉化}中引入的神经网络质量损失景观特征,以及在\cite{draxler2018}中使用的连接测试,以研究PQC培训中的损失地貌特征。我们介绍了在简单回归任务方面受过培训的PQCs的结果,我们使用了双层电路 ansaz, 由参数化旋转门和熔化门的交替层组成。多路由3美元不同的梯度优化器(Stochacistic梯系、量自然梯度梯度)和Adam组成。我们确定了地貌中的大型特征,可以导致培训工作流程的更快融合。