In the group testing problem, the goal is to identify a subset of defective items within a larger set of items based on tests whose outcomes indicate whether any defective item is present. This problem is relevant in areas such as medical testing, DNA sequencing, and communications. In this paper, we study a doubly-regular design in which the number of tests-per-item and the number of items-per-test are fixed. We analyze the performance of this test design alongside the Definite Defectives (DD) decoding algorithm in several settings, namely, (i) the sub-linear regime $k=o(n)$ with exact recovery, (ii) the linear regime $k=\Theta(n)$ with approximate recovery, and (iii) the size-constrained setting, where the number of items per test is constrained. Under setting (i), we show that our design together with the DD algorithm, matches an existing achievability result for the DD algorithm with the near-constant tests-per-item design, which is known to be asymptotically optimal in broad scaling regimes. Under setting (ii), we provide novel approximate recovery bounds that complement a hardness result regarding exact recovery. Lastly, under setting (iii), we improve on the best known upper and lower bounds in scaling regimes where the maximum allowed test size grows with the total number of items.
翻译:在小组测试问题中,目标是在测试结果显示是否存在任何有缺陷的物品的更大系列项目中确定一组有缺陷的物品。 这个问题与医学测试、DNA测序和通信等领域有关。 在本文中, 我们研究一种双常规设计, 将每件试验的数量和每件试验项目的数量固定下来。 我们分析这一测试设计与若干环境的“ 缺陷分解算法(DD) ” 一起的性能, 即:(一) 次级线性制度$=o(n), 准确回收;(二) 线性制度$k_Theta(n), 大致恢复;(三) 尺寸受限制的设置,每件试验项目的数量受限制。 在设置(一) 下, 我们显示我们与DD算法一起的设计, 将现有的D算法的可实现性结果与接近一致的测试-每件的算法相匹配, 众所周知, 即精确的回收制度在广泛规模上是有条件的, (二) 线性制度, $k_Theta(n) $n) 准性制度, 大约受限制的设置了每个试验的大小, 在最接近的恢复制度下, 我们提供最新的试定定的恢复结果, 在最精确的大小的改进。