Since sparse neural networks usually contain many zero weights, these unnecessary network connections can potentially be eliminated without degrading network performance. Therefore, well-designed sparse neural networks have the potential to significantly reduce FLOPs and computational resources. In this work, we propose a new automatic pruning method - Sparse Connectivity Learning (SCL). Specifically, a weight is re-parameterized as an element-wise multiplication of a trainable weight variable and a binary mask. Thus, network connectivity is fully described by the binary mask, which is modulated by a unit step function. We theoretically prove the fundamental principle of using a straight-through estimator (STE) for network pruning. This principle is that the proxy gradients of STE should be positive, ensuring that mask variables converge at their minima. After finding Leaky ReLU, Softplus, and Identity STEs can satisfy this principle, we propose to adopt Identity STE in SCL for discrete mask relaxation. We find that mask gradients of different features are very unbalanced, hence, we propose to normalize mask gradients of each feature to optimize mask variable training. In order to automatically train sparse masks, we include the total number of network connections as a regularization term in our objective function. As SCL does not require pruning criteria or hyper-parameters defined by designers for network layers, the network is explored in a larger hypothesis space to achieve optimized sparse connectivity for the best performance. SCL overcomes the limitations of existing automatic pruning methods. Experimental results demonstrate that SCL can automatically learn and select important network connections for various baseline network structures. Deep learning models trained by SCL outperform the SOTA human-designed and automatic pruning methods in sparsity, accuracy, and FLOPs reduction.


翻译:由于稀疏的神经网络通常包含许多零权重,这些不必要的网络连接有可能在不降低网络性能的情况下被完全消除。 因此, 设计完善的智能神经网络有可能大幅降低 FLOP 和计算资源。 在这项工作中, 我们提出一种新的自动调整方法 - Sprass 连接性学习( SCL) 。 具体地说, 重量被重新定性为可训练重量变量和二元面罩的元素增殖。 因此, 网络连接由二进制的二进制掩罩充分描述, 由单位级函数调节。 我们理论上证明, 使用直通的自动计算器( STE) 来大幅降低网络运行。 我们提议, 使用更直通的直通的自动估算器( STE) 来降低网络性能。 这个原则是, STE的代理梯度梯度梯度梯度梯度值应该为正正数, 保证隐藏网络内的各种变现功能。 在找到 Leaky ReL, Softplus 之后, 我们提议, 将身份STEEEEED 用于离线系统化, 通过最不固定的Sload Strealal deal deal train commal train strain train strain strain strain strain strual train strual train strual struction.

0
下载
关闭预览

相关内容

稀疏连接(Sparse Connectivity),又称稀疏交互、稀疏权重。受神经科学中每个细胞只对一个视觉区域内极小的一部分敏感,而对其他部分则可以视而不见的现象启发,稀疏连接成为卷积神经网络的一种重要思想,以帮助改进机器学习系统。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员