We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator -- that is, a measurable function of the observation -- and a fictitious adversary choosing a prior -- that is, a pair of signal and noise distributions ranging over independent Wasserstein balls -- with the goal to minimize and maximize the expected squared estimation error, respectively. We show that if the Wasserstein balls are centered at normal distributions, then the zero-sum game admits a Nash equilibrium, where the players' optimal strategies are given by an {\em affine} estimator and a {\em normal} prior, respectively. We further prove that this Nash equilibrium can be computed by solving a tractable convex program. Finally, we develop a Frank-Wolfe algorithm that can solve this convex program orders of magnitude faster than state-of-the-art general purpose solvers. We show that this algorithm enjoys a linear convergence rate and that its direction-finding subproblems can be solved in quasi-closed form.
翻译:我们引入了一个分布上稳健的微型平均平方差错估计模型, 瓦塞斯坦语的模棱两可, 以从噪音观测中恢复一个未知的信号。 提议的模型可以被视为一个零和游戏, 一方面是统计家选择一个估算器 -- 即观测的可测量功能 -- 与一个虚构的对手选择一个先行 -- 即一组分布在独立的瓦塞斯坦语球之上的信号和噪音分布 -- -- 分别旨在最小化和最大化预期的平方估计错误。 我们开发了一种弗兰克- 沃菲算法, 能够解决比州级通用目的解算法更快的等离子程序级。 我们展示了这种算法具有线性趋近率, 其方向解析子问题可以以准形式得到解决 。