An increasing number of Chinese people are troubled by different degrees of visual impairment, which has made the modal conversion between a single image or video frame in the visual field and the audio expressing the same information a research hotspot. Deep learning technologies such as OCR+Vocoder and Im2Wav enable English audio synthesis or image-to-sound matching in a self-supervised manner. However, the audio data used for training is limited and English is not universal for visually impaired people with different educational levels. Therefore, for the sake of solving the problems of data volume and language applicability to improve the reading efficiency of visually impaired people, a set of image-to-speech framework CLIP-KNN-Fastspeech2 based on the Chinese context was constructed. The framework integrates multiple basic models and adopts the strategy of independent pre-training and joint fine-tuning. First, the Chinese CLIP and Fastspeech2 text-to-speech models were pre-trained on two public datasets, MUGE and Baker, respectively, and their convergence was verified. Subsequently, joint fine-tuning was performed using a self-built Braille image dataset. Experimental results on multiple public datasets such as VGGSound, Flickr8k, ImageHear, and the self-built Braille dataset BIT-DP show that the model has improved objective indicators such as BLEU4,FAD(Fr\'echet Audio Distance), WER(Word Error Ratio), and even inference speed. This verifies that the constructed model still has the ability to synthesize high-quality speech under limited data, and also proves the effectiveness of the joint training strategy that integrates multiple basic models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员