The Boundary representation (B-rep) format is the de-facto shape representation in computer-aided design (CAD) to model solid and sheet objects. Recent approaches to generating CAD models have focused on learning sketch-and-extrude modeling sequences that are executed by a solid modeling kernel in postprocess to recover a B-rep. In this paper we present a new approach that enables learning from and synthesizing B-reps without the need for supervision through CAD modeling sequence data. Our method SolidGen, is an autoregressive neural network that models the B-rep directly by predicting the vertices, edges, and faces using Transformer-based and pointer neural networks. Key to achieving this is our Indexed Boundary Representation that references B-rep vertices, edges and faces in a well-defined hierarchy to capture the geometric and topological relations suitable for use with machine learning. SolidGen can be easily conditioned on contexts e.g., class labels, images, and voxels thanks to its probabilistic modeling of the B-rep distribution. We demonstrate qualitatively, quantitatively, and through perceptual evaluation by human subjects that SolidGen can produce high quality, realistic CAD models.
翻译:边界代表( B- rep) 格式是计算机辅助设计( CAD) 模拟固态和工作表对象的脱facto 形状代表 。 生成 CAD 模型的最近方法侧重于学习由后处理固态模型内核执行的草图和外形模型序列, 以恢复 B- rep 。 在本文中, 我们展示了一种新的方法, 在不需要通过 CAD 模型序列数据来监督的情况下, 学习和合成 B- rep 。 我们的方法 SolidGen 是一个自动反向神经网络, 利用变异器和指针神经网络直接模拟 B- 修复 。 实现这一目标的关键是我们指数化的边界代表, 它引用 B-rep 脊椎、 边缘和面, 在一个明确界定的层次结构中, 来捕捉适合机器学习使用的地貌和表层关系。 SlodGen 很容易以环境为条件, 例如, 类标签、 图像和 voxel 网络, 直接模拟 B- gregialal- dealalalalalalalal ex ex ex ex, 我们通过高质量的模型, ex- greal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal ex sal ex ex sal ex sal ex salviald sal exvial exvialviewal ex saldal ex.