项目名称: 蠕变时效成形/扩散复合异种铝合金的初始组织依赖性

项目编号: No.51474176

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 矿业工程

项目作者: 陈铮

作者单位: 西北工业大学

项目金额: 83万元

中文摘要: 蠕变时效成形/扩散复合是复合材料制备和构件成形的一体化技术,以热压罐实现异种铝合金的蠕变复合、扩散复合、蠕变成形、时效强化。初始组织显著改变随后相变过程,称为初始组织依赖性,可作为调控异种铝合金复合材料制件组织的一个技术原理和手段,据此,凝练出物理冶金、力学冶金、化学冶金的综合科学问题- - 成分变化、蠕变条件下动态析出的初始组织依赖性。 本项目将复合材料制备、构件成形、静态析出、动态析出、微观相场模拟的研究相结合,蠕变时效成形/扩散复合技术制备2000系铝合金/2000系铝锂合金复合材料制件。研究初始组织对预时效工艺的响应关系,探讨互扩散、蠕变、宏观应力松弛、纳观相界错配应力对异种铝合金基体和界面层初始组织依赖性的影响,包括依赖程度、取相依赖性、弥散度依赖性,揭示静态析出初始组织在动态析出过程的影响机制,提出控制初始组织、优化蠕变时效成形/扩散复合的基体和界面层组织的科学原则。

中文关键词: 塑性成形;组织演变;相变动力学;数值模拟;力学性能

英文摘要: Creep age forming/diffusion bonding is an integrated technology for composite material fabrication and component forming. It utilizes creep age forming autoclave to realize creep composition, diffusion bonding, creep forming and aging strengthening of heterogeneous aluminum alloys. The dependence of phase transformation process on initial microstructure is called initial microstructure dependence, and is a technical mechanism and approach to control the component microstructure of heterogeneous aluminum alloy composite material. Accordingly, we summarize a comprehensive scientific question of physical metallurgy, mechanical metallurgy, and chemical metallurgy: the initial microstructure dependence of dynamics precipitation under the condition of compositional variation and creep. This project will consist of composite material fabrication, component forming, static precipitation, dynamic precipitation, micro-phase field simulation. We will employ creep age forming/diffusion bonding technology to fabricate 2000-series aluminum alloy/2000-seris aluminum-lithium alloy composite material component. We will then study the response relation between initial microstructure and pre-aging process; discuss the influence of mutual diffusion, creep, macro-stress relaxation,nano-style mismatch stress of phase boundary on the initial microstructure dependence of substrate and interfacial layer of heterogeneous aluminum alloys, including degree of dependence,phase orientation and dispersity dependence; reveal the Influence mechanism of statics precipitation's initial microstructure in dynamic precipitation process; propose the scientific principle of controlling initial microstructure, optimizing the substrate and interfacial layer microstructure during creep age forming/diffusion bonding.

英文关键词: plastic forming;microstructure evolution;phase transition dynamics;numerical simulation;mechanical properties

成为VIP会员查看完整内容
0

相关内容

2022城市大脑建设标准研究报告,36页pdf
专知会员服务
58+阅读 · 2022年4月7日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
22+阅读 · 2021年9月25日
专知会员服务
111+阅读 · 2021年9月22日
专知会员服务
31+阅读 · 2021年5月7日
流畅的Python 中英文版 PDF 高清电子书
专知会员服务
80+阅读 · 2020年8月2日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
聊聊炼丹效率
极市平台
0+阅读 · 2022年4月16日
Go中的泛型:激动人心的突破
AI前线
0+阅读 · 2022年4月7日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
【AAAI专题】论文分享:以生物可塑性为核心的类脑脉冲神经网络
中国科学院自动化研究所
15+阅读 · 2018年1月23日
人工神经网络
平均机器
14+阅读 · 2017年7月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月1日
Arxiv
0+阅读 · 2022年5月28日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
2022城市大脑建设标准研究报告,36页pdf
专知会员服务
58+阅读 · 2022年4月7日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
39+阅读 · 2021年11月12日
专知会员服务
22+阅读 · 2021年9月25日
专知会员服务
111+阅读 · 2021年9月22日
专知会员服务
31+阅读 · 2021年5月7日
流畅的Python 中英文版 PDF 高清电子书
专知会员服务
80+阅读 · 2020年8月2日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
相关资讯
聊聊炼丹效率
极市平台
0+阅读 · 2022年4月16日
Go中的泛型:激动人心的突破
AI前线
0+阅读 · 2022年4月7日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
【AAAI专题】论文分享:以生物可塑性为核心的类脑脉冲神经网络
中国科学院自动化研究所
15+阅读 · 2018年1月23日
人工神经网络
平均机器
14+阅读 · 2017年7月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员