We study the computation of the zero set of the Bargmann transform of a signal contaminated with complex white noise, or, equivalently, the computation of the zeros of its short-time Fourier transform with Gaussian window. We introduce the adaptive minimal grid neighbors algorithm (AMN), a variant of a method that has recently appeared in the signal processing literature, and prove that with high probability it computes the desired zero set. More precisely, given samples of the Bargmann transform of a signal on a finite grid with spacing $\delta$, AMN is shown to compute the desired zero set up to a factor of $\delta$ in the Wasserstein error metric, with failure probability $O(\delta^4 \log^2(1/\delta))$. We also provide numerical tests and comparison with other algorithms.
翻译:我们研究Bargmann变换信号的零套数的计算方法,该交换信号被复杂的白色噪音所污染,或相等于用高山窗口计算其短时Fourier变换的零。我们引入适应性最小网格邻居算法(AMN),这是最近出现在信号处理文献中的一种方法的变种,并证明它极有可能计算出理想的零套数。更准确地说,考虑到Bargmann变换信号的样本,该交换网格带有间距$\delta$的有限网格,显示AMN在瓦塞尔斯坦误差指标中计算出理想的零位数,其误差概率为$\delta$(O\delta4\log>2(1/\delta)$(log_2(1/\delta)))。我们还提供数字测试和与其他算法的比较。