We combine ideas from distance sensitivity oracles (DSOs) and fixed-parameter tractability (FPT) to design sensitivity oracles for FPT graph problems. An oracle with sensitivity $f$ for an FPT problem $\Pi$ on a graph $G$ with parameter $k$ preprocesses $G$ in time $O(g(f,k) \cdot \textsf{poly}(n))$. When queried with a set $F$ of at most $f$ edges of $G$, the oracle reports the answer to the $\Pi$-with the same parameter $k$-on the graph $G-F$, i.e., $G$ deprived of $F$. The oracle should answer queries in a time that is significantly faster than merely running the best-known FPT algorithm on $G-F$ from scratch. We mainly design sensitivity oracles for the $k$-Path and the $k$-Vertex Cover problem. Following our line of research connecting fault-tolerant FPT and shortest paths problems, we also introduce parameterization to the computation of distance preservers. We study the problem, given a directed unweighted graph with a fixed source $s$ and parameters $f$ and $k$, to construct a polynomial-sized oracle that efficiently reports, for any target vertex $v$ and set $F$ of at most $f$ edges, whether the distance from $s$ to $v$ increases at most by an additive term of $k$ in $G-F$.
翻译:我们结合了来自远程敏感度或触角(DSO)和固定参数可感应度(FPT)的理念,设计了FPT图形问题的灵敏度或触角。一个敏感度为美元,对FPT问题的敏感度为美元美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,一个敏感度为美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元,用美元。当量,用我们的研究线,用美元,用美元,用美元,用美元,用最短的距离,用美元,用最短的距离,用我们用最接近的方法,用一个标准,用一个不易,我们用一个标准,用一个标准,用一个标准,用美元,我们用一个标准,用美元,用一个最短的量,用美元,用美元,用一个标准,用一个不固定的量的方法,用美元,用美元,用美元,用美元, 标准。