Estimation of linear functionals from observed data is an important task in many subjects. Juditsky & Nemirovski [The Annals of Statistics 37.5A (2009): 2278-2300] propose a framework for non-parametric estimation of linear functionals in a very general setting, with nearly minimax optimal confidence intervals. They compute this estimator and the associated confidence interval by approximating the saddle-point of a function. While this optimization problem is convex, it is rather difficult to solve using existing off-the-shelf optimization software. Furthermore, this computation can be expensive when the estimators live in a high-dimensional space. We propose a different algorithm to construct this estimator. Our algorithm can be used with existing optimization software and is much cheaper to implement even when the estimators are in a high-dimensional space, as long as the Hellinger affinity (or the Bhattacharyya coefficient) for the chosen parametric distribution can be efficiently computed given the parameters. We hope that our algorithm will foster the adoption of this estimation technique to a wider variety of problems with relative ease.
翻译:从观测到的数据对线性功能进行估计在许多科目中是一项重要任务。 Juditsky & Nemirovski [The Annals of Status 37.5A(2009):2278-2300] 提议了一个框架,用于在非常笼统的环境中对线性功能进行非参数估计,使用近乎微量最佳信任度间隔。它们通过接近某一函数的支撑点来计算这个估计值和相关的信任度间隔。虽然这个优化问题是一个锥体问题,但使用现有的现成优化软件是相当困难的。此外,当测算器居住在一个高维空间时,这一计算费用可能很高。我们提议了一个不同的算法来构建这个估计值。我们的算法可以与现有的优化软件一起使用,而且即使测算器位于一个高维空间,也比较便宜,只要根据参数可以有效地计算出所选择的对等分法分布的密切度(或Bhattachary系数),我们希望我们的算法将促进采用这一估计技术,以便比较容易地解决更广泛的问题。