Generative moment matching networks (GMMNs) are introduced as quasi-random number generators (QRNGs) for multivariate models with any underlying copula in order to estimate expectations with variance reduction. So far, QRNGs for multivariate distributions required a careful design, exploiting specific properties (such as conditional distributions) of the implied copula or the underlying quasi-Monte Carlo (QMC) point set, and were only tractable for a small number of models. Utilizing GMMNs allows one to construct QRNGs for a much larger variety of multivariate distributions without such restrictions. Once trained with a pseudo-random sample, these neural networks only require a multivariate standard uniform randomized QMC point set as input and are thus fast in estimating expectations of interest under dependence with variance reduction. Numerical examples are considered to demonstrate the approach, including applications inspired by risk management practice. All results are reproducible with the demo HPZ19 as part of the new R package gnn; select minimal working examples are provided in the demo GMMN_QMC of gnn
翻译:生成瞬时匹配网络(GMMNs)是作为具有任何基本千兆瓦的多变数模型的准随机数生成器(QRNGs)引入的,这些多变数模型与任何基本千兆瓦相匹配,以便估计预期差异的减少。迄今为止,用于多变分布的QRNGs需要仔细设计,利用隐含的千兆瓦或基本准蒙太卡洛(QMC)点的特定特性(如有条件分布),并且只能用于少数模式。利用GMMNMs允许一个人在没有这种限制的情况下建造QRNGs,用于更多种类的多变数分布。这些神经网络在经过假随机抽样培训后,只需要作为投入的多变数标准统一随机QMC点,从而可以快速估计依赖下的利益预期值,从而降低差异。可以考虑数字实例来证明这一方法,包括风险管理做法所激发的应用。所有结果都可以与新Rgnn套件中的低速 HPZ19重新生成;在gnn制的GMMNMNM ⁇ MC中选择了最低限度的工作范例。