Estimating statistical properties is fundamental in statistics and computer science. In this paper, we propose a unified quantum algorithm framework for estimating properties of discrete probability distributions, with estimating R\'enyi entropies as specific examples. In particular, given a quantum oracle that prepares an $n$-dimensional quantum state $\sum_{i=1}^{n}\sqrt{p_{i}}|i\rangle$, for $\alpha>1$ and $0<\alpha<1$, our algorithm framework estimates $\alpha$-R\'enyi entropy $H_{\alpha}(p)$ to within additive error $\epsilon$ with probability at least $2/3$ using $\widetilde{\mathcal{O}}(n^{1-\frac{1}{2\alpha}}/\epsilon + \sqrt{n}/\epsilon^{1+\frac{1}{2\alpha}})$ and $\widetilde{\mathcal{O}}(n^{\frac{1}{2\alpha}}/\epsilon^{1+\frac{1}{2\alpha}})$ queries, respectively. This improves the best known dependence in $\epsilon$ as well as the joint dependence between $n$ and $1/\epsilon$. Technically, our quantum algorithms combine quantum singular value transformation, quantum annealing, and variable-time amplitude estimation. We believe that our algorithm framework is of general interest and has wide applications.
翻译:估算统计属性是统计和计算机科学的基础。 在本文中, 我们提出一个统一的量子算法框架, 用于估算离散概率分布的属性, 以估算 R\' enyi 的元素。 特别是, 考虑到一个量子, 以$=1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\