This paper presents a new Network Intrusion Detection System (NIDS) based on Graph Neural Networks (GNNs). GNNs are a relatively new sub-field of deep neural networks, which can leverage the inherent structure of graph-based data. Training and evaluation data for NIDSs are typically represented as flow records, which can naturally be represented in a graph format. This establishes the potential and motivation for exploring GNNs for network intrusion detection, which is the focus of this paper. Current approaches to graph representation learning can only consider topological information and/or node features, but not edge features. This is a key limitation for the use of current GNN models for network intrusion detection, since critical flow information for the detection of anomalous or malicious traffic, e.g. flow size, flow duration, etc., is represented as edge features in a graph representation. In this paper, we propose E-GraphSAGE, a first GNN approach which overcomes this limitation and which allows capturing the edge features of a graph, in addition to node features and topological information. We present a novel NIDS based on E-GraphSAGE, and our extensive experimental evaluation on six recent NIDS benchmark datasets shows that it outperforms the state-of-the-art in regards to key classification metrics in four out of six cases, and closely matches it in the other two cases. Our research and initial basic system demonstrates the potential of GNNs for network intrusion detection, and provides motivation for further research.


翻译:本文介绍了基于图形神经网络的新的网络入侵探测系统(NIDS)。 GNN是深神经网络中较新的一个子领域,可以利用基于图形的数据的固有结构。 NIDS的训练和评价数据通常以流程记录的形式表示,可以自然地以图表格式表示。这确立了为网络入侵探测探索GNNS的潜力和动机,这是本文的重点。目前图表教学方法只能考虑表层信息和/或节点特征,而不是边缘特征。这是使用当前GNN研究模型进行网络入侵探测的关键限制,因为使用GNN研究模型进行网络入侵探测的关键流程信息,因为用于检测异常或恶意交通的关键流程信息,例如流量大小、流程持续时间等,通常以图表格式表示。本文提出了探索GraphSAGE,这是克服这一限制的第一个GNNN方法,除了节点特征和顶点信息外,还能够捕捉到图表的边缘特征。我们根据EGANSA的初始研究模型和六种初步数据系统,在EGRAGA中展示了我们最近的六种基准和四类数据库中,提供了我们最近测试案例的六种标准。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
8+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员