In this article, we construct and analyse an explicit numerical splitting method for a class of semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed to grow polynomially and satisfies a global one-sided Lipschitz condition. The method is proved to be mean-square convergent of order 1 and to preserve important structural properties of the SDE. First, it is hypoelliptic in every iteration step. Second, it is geometrically ergodic and has an asymptotically bounded second moment. Third, it preserves oscillatory dynamics, such as amplitudes, frequencies and phases of oscillations, even for large time steps. Our results are illustrated on the stochastic FitzHugh-Nagumo model and compared with known mean-square convergent tamed/truncated variants of the Euler-Maruyama method. The capability of the proposed splitting method to preserve the aforementioned properties may make it applicable within different statistical inference procedures. In contrast, known Euler-Maruyama type methods commonly fail in preserving such properties, yielding ill-conditioned likelihood-based estimation tools or computationally infeasible simulation-based inference algorithms.
翻译:在此篇文章中, 我们为一组半线性随机差异方程式( SDEs) 构建和分析一个明确的数字分割法, 配有添加性噪音, 允许漂移以多元方式生长, 满足全球单向利普西茨条件。 该方法被证明是第1号单向组合, 并保存SDE的重要结构属性。 首先, 它在每一个迭代步骤中都是低电动的。 其次, 它具有几何异词性, 具有无孔不入的第二个时刻。 第三, 它保存了悬浮动态, 如振荡的振动、 频率和相位, 甚至可以采取大的时间步骤。 我们的结果在Stochatical- squre concluding of ordnective 1, 并比照已知的Euler- Marumama 方法的已知的中平均趋同调调调/ 调变方。 拟议的分离法保存上述属性的能力可能使其适用于不同的统计推断程序。 第三, 它保存振动性动态动态, 如振动、 频率、 频率 和相测算法中已知的极值分析工具。