In coded aperture snapshot spectral imaging (CASSI) system, the real-world hyperspectral image (HSI) can be reconstructed from the captured compressive image in a snapshot. Model-based HSI reconstruction methods employed hand-crafted priors to solve the reconstruction problem, but most of which achieved limited success due to the poor representation capability of these hand-crafted priors. Deep learning based methods learning the mappings between the compressive images and the HSIs directly achieved much better results. Yet, it is nontrivial to design a powerful deep network heuristically for achieving satisfied results. In this paper, we propose a novel HSI reconstruction method based on the Maximum a Posterior (MAP) estimation framework using learned Gaussian Scale Mixture (GSM) prior. Different from existing GSM models using hand-crafted scale priors (e.g., the Jeffrey's prior), we propose to learn the scale prior through a deep convolutional neural network (DCNN). Furthermore, we also propose to estimate the local means of the GSM models by the DCNN. All the parameters of the MAP estimation algorithm and the DCNN parameters are jointly optimized through end-to-end training. Extensive experimental results on both synthetic and real datasets demonstrate that the proposed method outperforms existing state-of-the-art methods. The code is available at https://see.xidian.edu.cn/faculty/wsdong/Projects/DGSM-SCI.htm.


翻译:在代码孔径光速光谱成像系统(CASSI)中,真实世界超光谱图像(HSI)可以从所捕捉的压缩图像中以快照形式重建。基于模型的HSI重建方法采用了手工制作的前期方法来解决重建问题,但由于这些手工制作的前科的演示能力差,其中多数取得了有限的成功。深层次学习基于学习的方法在压缩图像和高光谱成像之间的绘图直接取得更好的结果。然而,设计一个强大的深深网络超光谱图像(HSI),以便取得令人满意的结果,并不值得一试。在本文中,我们提议根据最大波斯内面(MAP)估算框架采用新的HSI重建方法。所有参数都不同于现有手工制作前级(例如,Jeffrey的前期)的现有GSM模型模型模型模型,我们提议通过深层的转动神经神经网络(DCNNN)来学习比例。此外,我们还提议由DCNNNNE(D)估算GS模型的当地手段。所有参数都是通过Gosimal-S-imalimalimal ad amal dassal dassal 和DMISal 正在展示现有的最新数据分析法,这是在目前进行最佳的模拟分析和DMISDMLADMLA和DMLA和DADADADADADA和DSDS的模型中的拟议最佳的现有数据分析方法,这是现有的模拟方法。我们提议的现有的模型。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
59+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员