We develop two unfitted finite element methods for the Stokes equations based on $\mathbf{H}^{\text{div}}$-conforming finite elements. The first method is a cut finite element discretization of the Stokes equations based on the Brezzi-Douglas-Marini elements and involves interior penalty terms to enforce tangential continuity of the velocity at interior edges in the mesh. The second method is a cut finite element discretization of a three-field formulation of the Stokes problem involving the vorticity, velocity, and pressure and uses the Raviart-Thomas space for the velocity. We present mixed ghost penalty stabilization terms for both methods so that the resulting discrete problems are stable and the divergence-free property of the $\mathbf{H}^{\text{div}}$-conforming elements is preserved also for unfitted meshes. We compare the two methods numerically. Both methods exhibit robust discrete problems, optimal convergence order for the velocity, and pointwise divergence-free velocity fields, independently of the position of the boundary relative to the computational mesh.
翻译:我们基于$\mathbf{H}^{\text{div}}$-一致有限元,开发了两种基于切向有限元的未配对有限元方法来离散化史托克斯方程。第一种方法是基于Brezzi-Douglas-Marini元素的切向有限元离散化,该方法涉及内部惩罚项以强制在网格内的内部边缘处的速度的切向连续性。第二种方法是史托克斯问题三场公式的切向有限元离散化,涉及涡度、速度和压力,并使用了Raviart-Thomas空间来表示速度。我们为这两种方法提出了混合幽灵惩罚稳定化项,以便所得到的离散问题是稳定的,并且$\mathbf{H}^{\text{div}}$- 一致元素的无发散属性在未配对网格上也得以保持。我们通过数值比较这两种方法。两种方法都具有强大的离散问题、速度的最优收敛阶、点值无发散速度场,而与边界相对于计算网格位置无关。