Auxiliary particle filters (APFs) are a class of sequential Monte Carlo (SMC) methods for Bayesian inference in state-space models. In their original derivation, APFs operate in an extended state space using an auxiliary variable to improve inference. In this work, we propose optimized auxiliary particle filters, a framework where the traditional APF auxiliary variables are interpreted as weights in an importance sampling mixture proposal. Under this interpretation, we devise a mechanism for proposing the mixture weights that is inspired by recent advances in multiple and adaptive importance sampling. In particular, we propose to select the mixture weights by formulating a convex optimization problem, with the aim of approximating the filtering posterior at each timestep. Further, we propose a weighting scheme that generalizes previous results on the APF (Pitt et al. 2012), proving unbiasedness and consistency of our estimators. Our framework demonstrates significantly improved estimates on a range of metrics compared to state-of-the-art particle filters at similar computational complexity in challenging and widely used dynamical models.
翻译:辅助粒子过滤器(APF)是州-空间模型中Bayesian Experience(SMC)推理方法的一组相继Monte Carlo(SMC)方法。在最初的推断中,APF使用一个辅助变量在扩展的状态空间操作,以改进推理。在这项工作中,我们建议优化辅助粒子过滤器,在这个框架中,传统的APF辅助变量被解释为重要采样混合物提案中的重量。根据这一解释,我们设计了一个机制,以提出混合物加权法,这种混合加权法受多个和适应性重要取样最近进展的启发。特别是,我们提议通过设计一个convex优化问题来选择混合物加权法,目的是在每一个时间步骤中接近过滤后方的过滤器。此外,我们提出了一个加权法,概括了APFFS(Pitt等人,2012年)以往的结果,证明我们的估量器的公正性和一致性。我们的框架表明,在具有挑战性和广泛使用的动态模型中,与最先进的粒子过滤器相近的计算复杂度相比,对一系列指标的估计数有很大改进。