In this work, we establish near-linear and strong convergence for a natural first-order iterative algorithm that simulates Von Neumann's Alternating Projections method in zero-sum games. First, we provide a precise analysis of Optimistic Gradient Descent/Ascent (OGDA) -- an optimistic variant of Gradient Descent/Ascent -- for \emph{unconstrained} bilinear games, extending and strengthening prior results along several directions. Our characterization is based on a closed-form solution we derive for the dynamics, while our results also reveal several surprising properties. Indeed, our main algorithmic contribution is founded on a geometric feature of OGDA we discovered; namely, the limit points of the dynamics are the orthogonal projection of the initial state to the space of attractors. Motivated by this property, we show that the equilibria for a natural class of \emph{constrained} bilinear games are the intersection of the unconstrained stationary points with the corresponding probability simplexes. Thus, we employ OGDA to implement an Alternating Projections procedure, converging to an $\epsilon$-approximate Nash equilibrium in $\widetilde{\mathcal{O}}(\log^2(1/\epsilon))$ iterations. Our techniques supplement the recent work in pursuing last-iterate guarantees in min-max optimization. Finally, we illustrate an -- in principle -- trivial reduction from any game to the assumed class of instances, without altering the space of equilibria.
翻译:在这项工作中,我们为自然第一阶迭代算法建立了近线和紧密的趋同关系,该算法在零和游戏中模拟Von Neumann的变换预测法。首先,我们精确地分析了最佳梯度源/感源/感源(OGDA) -- -- 一种乐观的梯度源/感源/感源变体 -- -- 沿几个方向扩展和加强先前的结果。我们的定性是基于我们为动态产生的封闭式定式解决方案,而我们的结果也揭示出一些惊人的特性。事实上,我们的主要算法贡献基于我们发现的OGBDA的几何性特征;即动态的极限点是向吸引者空间的初始状态的正方位投影。受此属性的驱使,我们显示自然等级的宽度差(emph{不那么受限制的)双线游戏是我们不相容定的定点与相应的概率简单。因此,我们用OGBDA来从一个不精确的变数变数变数的变数的变数性变数,也就是我们最后的变数的变数的变数的变数的变数规则,也就是的变数-我们最后的变数规则的变数的变数的变数的变数的变数,也就是的变数的变数的变数方法。