Domain generalizable model is attracting increasing attention in medical image analysis since data is commonly acquired from different institutes with various imaging protocols and scanners. To tackle this challenging domain generalization problem, we propose a Domain Composition and Attention-based network (DCA-Net) to improve the ability of domain representation and generalization. First, we present a domain composition method that represents one certain domain by a linear combination of a set of basis representations (i.e., a representation bank). Second, a novel plug-and-play parallel domain preceptor is proposed to learn these basis representations and we introduce a divergence constraint function to encourage the basis representations to be as divergent as possible. Then, a domain attention module is proposed to learn the linear combination coefficients of the basis representations. The result of linear combination is used to calibrate the feature maps of an input image, which enables the model to generalize to different and even unseen domains. We validate our method on public prostate MRI dataset acquired from six different institutions with apparent domain shift. Experimental results show that our proposed model can generalize well on different and even unseen domains and it outperforms state-of-the-art methods on the multi-domain prostate segmentation task.
翻译:由于数据通常来自不同研究所,具有各种成像协议和扫描仪,因此在医学图像分析中,一般可计量模型正在引起越来越多的关注,因为数据通常来自不同研究所,因此,数据通常来自不同的成像规程和扫描仪。为了解决这个具有挑战性的域泛化问题,我们提议建立一个基于域的域组成和注意网络(DCA-Net),以提高域代表性和概括化的能力。首先,我们提出了一个域组成方法,通过一组基础代表(即代表库)的线性组合,代表了某一域。第二,提议建立一个新型的插头和边边边边边平行域域域受控器,以学习这些基础表示,我们引入了差异制约功能,鼓励基础表示尽可能不同。然后,建议了一个域关注模块,以学习基础表示的线性组合系数。线性组合的结果用于校准输入图像的特征图,使模型能够向不同甚至看不见的领域(即代表库)。我们验证了我们从六个不同机构获得的关于公共Prostate MRI数据集的方法,明显的域变换。实验结果显示,我们提议的模型可以将不同、甚至看不见的域和它超越多式任务段的状态。