We investigate the problem of monitoring partially observable systems with nondeterministic and probabilistic dynamics. In such systems, every state may be associated with a risk, e.g., the probability of an imminent crash. During runtime, we obtain partial information about the system state in form of observations. The monitor uses this information to estimate the risk of the (unobservable) current system state. Our results are threefold. First, we show that extensions of state estimation approaches do not scale due the combination of nondeterminism and probabilities. While convex hull algorithms improve the practical runtime, they do not prevent an exponential memory blowup. Second, we present a tractable algorithm based on model checking conditional reachability probabilities. Third, we provide prototypical implementations and manifest the applicability of our algorithms to a range of benchmarks. The results highlight the possibilities and boundaries of our novel algorithms.
翻译:我们调查了以非确定性和概率动态监测部分可观测系统的问题。 在这样的系统中,每个州都可能与风险有关,例如即将发生崩溃的概率。 在运行期间,我们以观察的形式获得关于系统状态的部分信息。 监视器使用这种信息来估计( 不可观察的) 当前系统状态的风险。 我们的结果有三重。 首先, 我们显示, 国家估算方法的扩展并不由于非确定性和概率的结合而规模扩大。 虽然 convex 机体算法改善了实际运行时间, 但它们并不防止指数性内存爆炸。 其次, 我们提出一种基于模型检查有条件的可达性概率的可移动算法。 第三, 我们提供原型执行, 并显示我们算法对一系列基准的适用性。 结果突出了我们新算法的可能性和范围。