Grammatical inference is concerned with the study of algorithms for learning automata and grammars from words. We focus on learning Nondeterministic Finite Automaton of size k from samples of words. To this end, we formulate the problem as a SAT model. The generated SAT instances being enormous, we propose some model improvements, both in terms of the number of variables, the number of clauses, and clauses size. These improvements significantly reduce the instances, but at the cost of longer generation time. We thus try to balance instance size vs. generation and solving time. We also achieved some experimental comparisons and we analyzed our various model improvements.
翻译:语法推论涉及从文字中学习自动mata和语法的算法研究。 我们侧重于从文字样本中学习非决定性的Finite Automaton 大小 k 。 为此,我们将问题发展成SAT模型。 产生的SAT实例非常巨大, 我们提议在变量数量、条款数量和条款大小方面进行一些模型改进。 这些改进极大地减少了实例,但花费了更长时间的时间。 因此,我们试图平衡实例大小与生成和解答时间。 我们还进行了一些实验性比较,并分析了我们的各种模型改进情况。