This paper addresses the degraded discrete-time Poisson wiretap channel (DT--PWC) in an optical wireless communication system based on intensity modulation and direct detection. Subject to nonnegativity, peak- and average-intensity as well as bandwidth constraints, we study the secrecy-capacity-achieving input distribution of this wiretap channel and prove it to be unique and discrete with a finite number of mass points; one of them located at the origin. Furthermore, we establish that every point on the boundary of the rate-equivocation region of this wiretap channel is also obtained by a unique and discrete input distribution with finitely many mass points. In general, the number of mass points of the optimal distributions is greater than two. This is in contrast with the degraded continuous-time PWC when the signaling bandwidth is not restricted and where the secrecy capacity and the entire boundary of the rate-equivocation region are achieved by binary distributions. Furthermore, we extend our analysis to the case where only an average-intensity constraint is active. For this case, we find that the secrecy capacity and the entire boundary of the rate-equivocation region are attained by discrete distributions with countably \textit{infinite} number of mass points, but with finitely many mass points in any bounded interval.


翻译:本文论述光学无线通信系统中基于强度调制和直接检测的光学无线通信系统中的离散时间Poisson窃听器频道(DT-PWC)的退化。根据非增强性、峰值和平均强度以及带宽限制等条件,我们研究该窃听频道的保密性能-实现输入分布,证明它独特和离散,质量点数量有限;其中之一位于发源地;此外,我们确定,该窃听频道速率-敏感区边界的每个点也是通过一个独特的和离散的投入分布获得的,有一定质量点;一般而言,最佳分布的质量点数量大于两个。这与信号带宽不受限制,而且通过双轨分布达到保密能力和率-平等区整个边界点的保密性分数不同;此外,我们将我们的分析范围扩大到仅存在平均密度制约的情况。对于这种情况,我们发现,最佳分布的质量点的数量大于两个质量点的连续持续时间点数,每个分点的离异度/边界点的分数。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月8日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员