Consider a two-person zero-sum search game between a hider and a searcher. The hider hides among $n$ discrete locations, and the searcher successively visits individual locations until finding the hider. Known to both players, a search at location $i$ takes $t_i$ time units and detects the hider -- if hidden there -- independently with probability $q_i$, for $i=1,\ldots,n$. The hider aims to maximize the expected time until detection, while the searcher aims to minimize it. We prove the existence of an optimal strategy for each player. In particular, the hider's optimal mixed strategy hides in each location with a nonzero probability, and the searcher's optimal mixed strategy can be constructed with up to $n$ simple search sequences. We develop an algorithm to compute an optimal strategy for each player, and compare the optimal hiding strategy with the simple hiding strategy which gives the searcher no location preference at the beginning of the search.


翻译:考虑在隐藏器和搜索器之间进行双人零和搜索游戏。 隐藏器隐藏在$n 离散的位置之间, 搜索器连续访问单个位置直到找到隐藏器。 被两个玩家知道, 搜索地点需要$t_ i 时间单位, 并检测隐藏器 -- -- 如果隐藏在那里的话 -- -- 以概率$_ i 美元独立进行, 概率为$= 1,\ ldots, n$ 。 隐藏器的目标是在检测前尽量缩短预期的时间, 而搜索器要尽可能减少这种时间。 我们证明每个玩家都存在最佳策略。 特别是, 隐藏器的最佳混合策略隐藏在每个位置, 概率不为零, 搜索器的最佳混合策略可以用高达$美元简单的搜索序列构建 。 我们开发一种算法, 来计算每个玩家的最佳策略, 并且将最佳隐藏策略与简单策略进行比较, 在搜索器开始时不偏好位置 。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
51+阅读 · 2020年12月14日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
128+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月6日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
51+阅读 · 2020年12月14日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
128+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员