Consider a two-person zero-sum search game between a hider and a searcher. The hider hides among $n$ discrete locations, and the searcher successively visits individual locations until finding the hider. Known to both players, a search at location $i$ takes $t_i$ time units and detects the hider -- if hidden there -- independently with probability $q_i$, for $i=1,\ldots,n$. The hider aims to maximize the expected time until detection, while the searcher aims to minimize it. We prove the existence of an optimal strategy for each player. In particular, the hider's optimal mixed strategy hides in each location with a nonzero probability, and the searcher's optimal mixed strategy can be constructed with up to $n$ simple search sequences. We develop an algorithm to compute an optimal strategy for each player, and compare the optimal hiding strategy with the simple hiding strategy which gives the searcher no location preference at the beginning of the search.
翻译:考虑在隐藏器和搜索器之间进行双人零和搜索游戏。 隐藏器隐藏在$n 离散的位置之间, 搜索器连续访问单个位置直到找到隐藏器。 被两个玩家知道, 搜索地点需要$t_ i 时间单位, 并检测隐藏器 -- -- 如果隐藏在那里的话 -- -- 以概率$_ i 美元独立进行, 概率为$= 1,\ ldots, n$ 。 隐藏器的目标是在检测前尽量缩短预期的时间, 而搜索器要尽可能减少这种时间。 我们证明每个玩家都存在最佳策略。 特别是, 隐藏器的最佳混合策略隐藏在每个位置, 概率不为零, 搜索器的最佳混合策略可以用高达$美元简单的搜索序列构建 。 我们开发一种算法, 来计算每个玩家的最佳策略, 并且将最佳隐藏策略与简单策略进行比较, 在搜索器开始时不偏好位置 。