Approximate Nearest Neighbor Search (ANNS) in high dimensional space is essential in database and information retrieval. Recently, there has been a surge of interest in exploring efficient graph-based indices for the ANNS problem. Among them, Navigating Spreading-out Graph (NSG) provides fine theoretical analysis and achieves state-of-the-art performance. However, we find there are several limitations with NSG: 1) NSG has no theoretical guarantee on nearest neighbor search when the query is not indexed in the database; 2) NSG is too sparse which harms the search performance. In addition, NSG suffers from high indexing complexity. To address the above problems, we propose the Satellite System Graphs (SSG) and a practical variant NSSG. Specifically, we propose a novel pruning strategy to produce SSGs from the complete graph. SSGs define a new family of MSNETs in which the out-edges of each node are distributed evenly in all directions. Each node in the graph builds effective connections to its neighborhood omnidirectionally, whereupon we derive SSG's excellent theoretical properties for both indexed and unindexed queries. We can adaptively adjust the sparsity of an SSG with a hyper-parameter to optimize the search performance. Further, NSSG is proposed to reduce the indexing complexity of the SSG for large-scale applications. Both theoretical and extensive experimental analyses are provided to demonstrate the strengths of the proposed approach over the existing representative algorithms. Our code has been released at https://github.com/ZJULearning/SSG.


翻译:近距离近邻搜索(ANNS)在高维空间的近邻搜索(ANNS)对于数据库和信息检索至关重要。最近,对探索高效的基于图形的ANNS问题指数的兴趣激增。其中,“导航扩展图”提供了精细的理论分析,并实现了最先进的性能。然而,我们发现NSG存在一些局限性:(1) 当查询没有在数据库中索引时,NSG对最近的邻居搜索没有理论保证;(2) NSG的强势太少,从而损害搜索性能。此外,NSG的指数复杂程度很高。为了解决上述问题,我们提出了卫星系统图表(SSG)和一个实用的NSSG变量。具体地说,我们提出了一个创新的调整战略,从完整的图表中生成SSG。SSG定义了一个新的MSNET的组合,其中每个节点的外端在所有方向均匀分布均匀分布。每个节点都构建了与其邻域的同步连接。此外,NSG的深度代码应用也随之展示了SSG的深度的理论性能和高级SSG的高级搜索分析。我们从S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
已删除
将门创投
3+阅读 · 2018年4月10日
Arxiv
0+阅读 · 2021年5月4日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
Top
微信扫码咨询专知VIP会员