We investigate variable-length feedback (VLF) codes for the Gaussian point-to-point channel under maximal power, average error probability, and average decoding time constraints. Our proposed strategy chooses $K < \infty$ decoding times $n_1, n_2, \dots, n_K$ rather than allowing decoding at any time $n = 0, 1, 2, \dots$. We consider stop-feedback, which is one-bit feedback transmitted from the receiver to the transmitter at times $n_1, n_2, \ldots$ only to inform her whether to stop. We prove an achievability bound for VLF codes with the asymptotic approximation $\ln M \approx \frac{N C(P)}{1-\epsilon} - \sqrt{N \ln_{(K-1)}(N) \frac{V(P)}{1-\epsilon}}$, where $\ln_{(K)}(\cdot)$ denotes the $K$-fold nested logarithm function, $N$ is the average decoding time, and $C(P)$ and $V(P)$ are the capacity and dispersion of the Gaussian channel, respectively. Our achievability bound evaluates a non-asymptotic bound and optimizes the decoding times $n_1, \ldots, n_K$ within our code architecture.
翻译:我们根据最大功率、平均误差概率和平均解码时间限制,调查高斯点对点频道的可变长反馈代码。 我们的拟议战略选择 $K <\ infty$ decoding乘以$_1, n_2,\ dots, n_K$, 而不是允许在任何时候解码 $n= 0, 1, 2,\ dots。 我们考虑中继为接收器传送到发报机的一元反馈, 时值为$_1, n_2,\ ldots, 只是为了通知她是否停止。 我们证明, 将VLF代码的可实现性约束到 $K, 以无损缩缩缩缩 $=NC (P) 1 -\\\\\\\\\\\ epsilon} (N)\ flace, 美元(P)\\\\\\\\\\\\\\\\\\ iplum_ 美元, 美元(美元) 和美元(美元)