The unpredictability and volatility of the stock market render it challenging to make a substantial profit using any generalized scheme. This paper intends to discuss our machine learning model, which can make a significant amount of profit in the US stock market by performing live trading in the Quantopian platform while using resources free of cost. Our top approach was to use ensemble learning with four classifiers: Gaussian Naive Bayes, Decision Tree, Logistic Regression with L1 regularization and Stochastic Gradient Descent, to decide whether to go long or short on a particular stock. Our best model performed daily trade between July 2011 and January 2019, generating 54.35% profit. Finally, our work showcased that mixtures of weighted classifiers perform better than any individual predictor about making trading decisions in the stock market.
翻译:股市的不可预测性和波动性使得利用任何通用计划获取大量利润成为挑战。本文件打算讨论我们的机器学习模式,通过在使用免费资源的同时在Quantopian平台上进行现场交易,从而在美国股市中获取大量利润。 我们的最首要办法是与四个分类者(高山纳伊夫湾、决策树、与L1正规化和Stochatic Gradientle Group)进行共同学习,以决定是长还是短。 我们的最佳模式在2011年7月至2019年1月之间实现了日常贸易,产生了54.35%的利润。 最后,我们的工作展示了加权分类者的混合比任何个体预测者在股市上做出贸易决策的更好表现。