Table Structure Recognition (TSR) aims at transforming unstructured table images into structured formats, such as HTML sequences. One type of popular solution is using detection models to detect components of a table, such as columns and rows, then applying a rule-based post-processing method to convert detection results into HTML sequences. However, existing detection-based studies often have the following limitations. First, these studies usually pay more attention to improving the detection performance, which does not necessarily lead to better performance regarding cell-level metrics, such as TEDS. Second, some solutions over-simplify the problem and can miss some critical information. Lastly, even though some studies defined the problem to detect more components to provide as much information as other types of solutions, these studies ignore the fact this problem definition is a multi-label detection because row, projected row header and column header can share identical bounding boxes. Besides, there is often a performance gap between two-stage and transformer-based detection models regarding the structure-only TEDS, even though they have similar performance regarding the COCO metrics. Therefore, we revisit the limitations of existing detection-based solutions, compare two-stage and transformer-based detection models, and identify the key design aspects for the success of a two-stage detection model for the TSR task, including the multi-class problem definition, the aspect ratio for anchor box generation, and the feature generation of the backbone network. We applied simple methods to improve these aspects of the Cascade R-CNN model, achieved state-of-the-art performance, and improved the baseline Cascade R-CNN model by 19.32%, 11.56% and 14.77% regarding the structure-only TEDS on SciTSR, FinTabNet, and PubTables1M datasets.
翻译:暂无翻译