Computing shortest paths is a fundamental operation in processing graph data. In many real-world applications, discovering shortest paths between two vertices empowers us to make full use of the underlying structure to understand how vertices are related in a graph, e.g. the strength of social ties between individuals in a social network. In this paper, we study the shortest-path-graph problem that aims to efficiently compute a shortest path graph containing exactly all shortest paths between any arbitrary pair of vertices on complex networks. Our goal is to design an exact solution that can scale to graphs with millions or billions of vertices and edges. To achieve high scalability, we propose a novel method, Query-by-Sketch (QbS), which efficiently leverages offline labelling (i.e., precomputed labels) to guide online searching through a fast sketching process that summarizes the important structural aspects of shortest paths in answering shortest-path-graph queries. We theoretically prove the correctness of this method and analyze its computational complexity. To empirically verify the efficiency of QbS, we conduct experiments on 12 real-world datasets, among which the largest dataset has 1.7 billion vertices and 7.8 billion edges. The experimental results show that QbS can answer shortest-path graph queries in microseconds for million-scale graphs and less than half a second for billion-scale graphs.


翻译:计算最短路径是处理图形数据的基本操作。 在许多现实世界应用程序中, 发现两个顶端之间的最短路径, 使我们能够充分利用基本结构, 了解在图表中脊椎的关联性。 例如, 社交网络中个人之间的社会联系强度。 在本文中, 我们研究最短路径图问题, 目的是有效计算一个最短路径图, 包含在复杂网络中任意的任意的两对顶端之间的所有最短路径。 我们的目标是设计一个精确的解决方案, 以百万或数十亿顶端和边缘的图形为尺度。 为了实现高度的可缩放性, 我们提出了一个新颖的方法, 即 Query- by- Sketch (QbS), 高效地利用离线标签( 即预数标签) 来引导在线搜索, 通过快速的图解进程, 总结在回答最短路径中回答最短路径的重要结构方面。 我们理论上证明这一方法的正确性, 并分析其计算复杂性。 为了实验性地验证Qb- S- squal 5 的图的效率, 我们进行最短的实验性地在12亿个图表中可以显示最短的图像中进行最短的实验性的数据答案。 。

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
已删除
将门创投
7+阅读 · 2020年3月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员