Multi-layered network exploration (MuLaNE) problem is an important problem abstracted from many applications. In MuLaNE, there are multiple network layers where each node has an importance weight and each layer is explored by a random walk. The MuLaNE task is to allocate total random walk budget $B$ into each network layer so that the total weights of the unique nodes visited by random walks are maximized. We systematically study this problem from offline optimization to online learning. For the offline optimization setting where the network structure and node weights are known, we provide greedy based constant-ratio approximation algorithms for overlapping networks, and greedy or dynamic-programming based optimal solutions for non-overlapping networks. For the online learning setting, neither the network structure nor the node weights are known initially. We adapt the combinatorial multi-armed bandit framework and design algorithms to learn random walk related parameters and node weights while optimizing the budget allocation in multiple rounds, and prove that they achieve logarithmic regret bounds. Finally, we conduct experiments on a real-world social network dataset to validate our theoretical results.


翻译:多层次网络探索(MuLANE) 问题是一个从许多应用中提取出来的重要问题。 在 MuLANE 中, 存在多个网络层, 每个节点都具有重要重量, 每个层都是随机行走的。 MuLANE 的任务是将随机行走总预算 $B$ 分配给每个网络层, 以便随机行走所访问的独特节点的总重量最大化。 我们系统地从离线优化到在线学习来研究这个问题。 对于已知网络结构和节点重量的离线优化设置, 我们为重叠网络提供基于贪婪的恒定鼠近似算法, 并为非重叠网络提供基于贪婪或动态程序的最佳解决方案。 对于在线学习设置, 网络结构或节点加权最初并不为人所知。 我们调整组合式多臂的多臂带框架和设计算法以学习随机行走相关参数和节点重量, 同时优化多轮预算分配, 并证明它们达到了对数的后退界限。 最后, 我们实验了一个真实世界的社会网络数据集, 以验证我们的理论结果 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2019年12月30日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员