A systematic theory of structural limits for finite models has been developed by Nesetril and Ossona de Mendez. It is based on the insight that the collection of finite structures can be embedded, via a map they call the Stone pairing, in a space of measures, where the desired limits can be computed. We show that a closely related but finer grained space of (finitely additive) measures arises -- via Stone-Priestley duality and the notion of types from model theory -- by enriching the expressive power of first-order logic with certain "probabilistic operators". We provide a sound and complete calculus for this extended logic and expose the functorial nature of this construction. The consequences are two-fold. On the one hand, we identify the logical gist of the theory of structural limits. On the other hand, our construction shows that the duality theoretic variant of the Stone pairing captures the adding of a layer of quantifiers, thus making a strong link to recent work on semiring quantifiers in logic on words. In the process, we identify the model theoretic notion of types as the unifying concept behind this link. These results contribute to bridging the strands of logic in computer science which focus on semantics and on more algorithmic and complexity related areas, respectively.
翻译:Nesetril 和 Ossona de Mendez 开发了限量模型结构限制的系统理论。 其基础是,通过一种洞察力, 有限结构的收集可以通过称为“石配对”的地图, 嵌入一个测量空间, 从而可以计算出理想的限量。 我们显示, 通过Ston-Priestley 的双重性和模型理论的种类概念, 产生了一个密切相关但更细的( 绝对添加的) 测量空间, 通过Ston- Priest- Priest 的双重性和模型理论的分类概念, 使一阶逻辑逻辑的表达力与某些“ 概率操作者” 更加丰富。 我们为这一扩展逻辑提供了一种完善和完整的计算方法, 并揭示了这一构造的交替性质。 其后果是双重的。 一方面, 我们确定了结构限制理论的逻辑逻辑逻辑学原理学原理学原理学原理学原理学原理学原理, 也分别有助于将计算机的精细度和逻辑学的精准性联系起来。