High-Definition (HD) maps play a crucial role in autonomous vehicle navigation, complementing onboard perception sensors for improved accuracy and safety. Traditional HD map generation relies on dedicated mapping vehicles, which are costly and fail to capture real-time infrastructure changes. This paper presents HDMapLaneNet, a novel framework leveraging V2X communication and Scene Graph Generation to collaboratively construct a localized geometric layer of HD maps. The approach extracts lane centerlines from front-facing camera images, represents them as graphs, and transmits the data for global aggregation to the cloud via V2X. Preliminary results on the nuScenes dataset demonstrate superior association prediction performance compared to a state-of-the-art method.
翻译:暂无翻译