We propose a novel method for reconstructing floor plans from noisy 3D point clouds. Our main contribution is a principled approach that relies on the Monte Carlo Tree Search (MCTS) algorithm to maximize a suitable objective function efficiently despite the complexity of the problem. Like previous work, we first project the input point cloud to a top view to create a density map and extract room proposals from it. Our method selects and optimizes the polygonal shapes of these room proposals jointly to fit the density map and outputs an accurate vectorized floor map even for large complex scenes. To do this, we adapted MCTS, an algorithm originally designed to learn to play games, to select the room proposals by maximizing an objective function combining the fitness with the density map as predicted by a deep network and regularizing terms on the room shapes. We also introduce a refinement step to MCTS that adjusts the shape of the room proposals. For this step, we propose a novel differentiable method for rendering the polygonal shapes of these proposals. We evaluate our method on the recent and challenging Structured3D and Floor-SP datasets and show a significant improvement over the state-of-the-art, without imposing any hard constraints nor assumptions on the floor plan configurations.
翻译:我们提出一个新的方法,从吵闹的3D点云中重建地板计划。我们的主要贡献是采用基于蒙特卡洛树搜索(MCTS)算法的原则性方法,在问题复杂的情况下将适当的客观功能最大化,从而在问题复杂的情况下将适当的客观功能最大化。和以前的工作一样,我们首先将输入点云投向顶部,以创建密度图并从中提取建议。我们的方法选择并优化这些房间建议的多边形,以联合匹配密度地图,并输出出精确的矢量式地面地图,即使对于大复杂场景也是如此。为了做到这一点,我们调整了MCTS,即一个最初设计用于学习游戏的算法,即MCTS,通过将一个目标功能最大化地功能,将密度图与深网络预测的密度图结合起来,并使房间形状的条件正规化,来选择房间提案。我们还对MCTS引入了一个改进步骤,调整了房间提案的形状。我们提出了一个新的不同方法,用于制作这些提议的多边形图。我们评估了我们最近和富有挑战性的结构3D和地面SP数据集的方法,在不强加任何硬的地面假设的情况下,在硬局或硬局式的假设上作了重大改进。