The current state-of-the-art methods in 3D instance segmentation typically involve a clustering step, despite the tendency towards heuristics, greedy algorithms, and a lack of robustness to the changes in data statistics. In contrast, we propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion. In doing so it avoids the challenges that clustering-based methods face: introducing dependencies among different tasks of the model. We find the key to its success is assigning a suitable target to each sampled point. Instead of the commonly used static or distance-based assignment strategies, we propose to use an Optimal Transport approach to optimally assign target masks to the sampled points according to the dynamic matching costs. Our approach achieves promising results on both ScanNet and S3DIS benchmarks. The proposed approach removes intertask dependencies and thus represents a simpler and more flexible 3D instance segmentation framework than other competing methods, while achieving improved segmentation accuracy.
翻译:3D 实例分割中目前最先进的方法通常涉及集群步骤,尽管倾向于超自然、贪婪的算法,而且数据统计的变化缺乏稳健性。相反,我们建议采用完全进化的 3D 点云率分割法,以每点预测的方式发挥作用。这样,可以避免基于集群的方法所面临的挑战:在模型的不同任务中引入依赖性。我们发现,成功的关键是给每个抽样点指定一个合适的目标。我们建议采用最佳运输方法,根据动态匹配成本,最佳地为抽样点指定目标掩码。我们的方法在ScantNet和S3DIS基准上都取得了大有希望的结果。在这样做时,拟议的方法消除了基于集群的方法的相互依存性,从而代表了一个比其他竞争方法更简单、更灵活的3D 例分割框架,同时提高了分化的准确性。