We resolve the long-standing "impossible tuning" issue for the classic expert problem and show that, it is in fact possible to achieve regret $O\left(\sqrt{(\ln d)\sum_t \ell_{t,i}^2}\right)$ simultaneously for all expert $i$ in a $T$-round $d$-expert problem where $\ell_{t,i}$ is the loss for expert $i$ in round $t$. Our algorithm is based on the Mirror Descent framework with a correction term and a weighted entropy regularizer. While natural, the algorithm has not been studied before and requires a careful analysis. We also generalize the bound to $O\left(\sqrt{(\ln d)\sum_t (\ell_{t,i}-m_{t,i})^2}\right)$ for any prediction vector $m_t$ that the learner receives, and recover or improve many existing results by choosing different $m_t$. Furthermore, we use the same framework to create a master algorithm that combines a set of base algorithms and learns the best one with little overhead. The new guarantee of our master allows us to derive many new results for both the expert problem and more generally Online Linear Optimization.


翻译:我们解决了对经典专家问题长期存在的“无法调试”问题,并表明,对于所有专家来说,如果美元是美元四舍五入,那么,对于美元四舍五入的问题,我们解决了长期存在的“无法调试”问题。我们的算法是以镜光源框架为基础,有了一个校正术语和一个加权的迷你调制器。自然地,算法以前没有研究过,需要仔细分析。我们还将所有专家在美元四舍五入(美元四舍五入,美元二分之二)中的“美元”的界限概括为美元四舍五入(美元四舍五入,美元四舍五入,美元四舍五入)。此外,我们使用同样的框架创建了一种主算法,将许多基础算法和许多基础算法的模型结合起来,从而可以使许多基础算法和在线算取出新的结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A Unified Framework for Hopsets and Spanners
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月22日
Arxiv
0+阅读 · 2021年8月19日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
A Unified Framework for Hopsets and Spanners
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
0+阅读 · 2021年8月22日
Arxiv
0+阅读 · 2021年8月19日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Top
微信扫码咨询专知VIP会员