This note illustrates the limitations of the hyperplane separation bound, a non-combinatorial lower bound on the extension complexity of a polytope. Most notably, this bounding technique is used by Rothvo{\ss} (J ACM 64.6:41, 2017) to establish an exponential lower bound for the perfect matching polytope. We point out that the technique is sensitive to the particular choice of slack matrix. For the \textit{canonical} slack matrices of the spanning tree polytope and the completion time polytope, we show that the lower bounds produced by the hyperplane separation method are trivial.
翻译:本说明说明了超高平板分离约束的局限性,这是对聚域的扩展复杂性的非combinator式下限。最明显的是,Rothvo_ss}(J ACM 64.6:41, 2017)使用这一约束技术来为完美匹配的聚域设定一个指数性下限。我们指出,该技术对松软矩阵的特定选择十分敏感。对于横跨树形多ope和完成时间聚域的\textit{canonic}松懈矩阵,我们显示超高平板分离法产生的较低边框是微不足道的。