We study the problem of dynamically allocating indivisible items to a group of agents in a fair manner. We assume that the items are goods and the valuation functions are additive without specification. Due to the negative results to achieve fairness, we allow adjustments to make fairness attainable with the objective to minimize the number of adjustments. We obtain positive results to achieve EF1 for (1) two agents with mixed manna, (2) restricted additive or general identical valuations, and (3) the default setting. We further impose the contiguity constraint on the items and require that each agent obtains a consecutive block of items. We obtain both positive and negative results to achieve either EF1 or proportionality with an additive approximate factor. In particular, we establish matching lower and upper bounds to achieve approximate proportionality for identical valuations. Our results exhibit the large discrepancy between the identical model and nonidentical model in both contiguous and noncontiguous settings. All our positive results are computationally efficient.
翻译:我们以公平的方式研究将不可分割的物品动态分配给一组代理人的问题,我们假定这些物品是货物,估价功能是不加具体说明的附加物。由于实现公平的消极结果,我们允许作出调整,以达到公平,目的是尽量减少调整的数量。我们为(1) 两种混合曼纳、(2) 限制性添加物或一般相同估值以及(3) 默认设置获得1 EF1 的积极成果。我们进一步限制物品的毗连性,要求每个代理人获得连续的一整块物品。我们取得正和负结果,既要达到EF1,要达到EF1,又要达到比例性,加上一个相加的近因数。特别是,我们建立相应的下限和上限线,以达到相同估值的大致相称性。我们的结果显示,在相邻和不相毗连的环境下,相同的模型和非相同的模型之间有很大差异。我们所有的积极结果都是计算有效的。