We study a submodular maximization problem motivated by applications in online retail. A platform displays a list of products to a user in response to a search query. The user inspects the first $k$ items in the list for a $k$ chosen at random from a given distribution, and decides whether to purchase an item from that set based on a choice model. The goal of the platform is to maximize the engagement of the shopper defined as the probability of purchase. This problem gives rise to a less-studied variation of submodular maximization in which we are asked to choose an $\textit{ordering}$ of a set of elements to maximize a linear combination of different submodular functions. First, using a reduction to maximizing submodular functions over matroids, we give an optimal $\left(1-1/e\right)$-approximation for this problem. We then consider a variant in which the platform cares not only about user engagement, but also about diversification across various groups of users, that is, guaranteeing a certain probability of purchase in each group. We characterize the polytope of feasible solutions and give a bi-criteria $((1-1/e)^2,(1-1/e)^2)$-approximation for this problem by rounding an approximate solution of a linear programming relaxation. For rounding, we rely on our reduction and the particular rounding techniques for matroid polytopes. For the special case in which underlying submodular functions are coverage functions -- which is practically relevant in online retail -- we propose an alternative LP relaxation and a simpler randomized rounding for the problem. This approach yields to an optimal bi-criteria $(1-1/e,1-1/e)$-approximation algorithm for the special case of the problem with coverage functions.


翻译:我们研究的是由在线零售应用程序引发的亚模式最大化问题。 平台会根据搜索查询, 向用户展示产品清单。 用户会检查列表中任意从给定分销中选择美元的第一个美元项目, 并决定是否根据选择模式从该集中购买一个项目。 平台的目标是最大限度地增加被定义为购买概率的筛选机的参与。 这个问题导致亚模式最大化的变化, 要求我们选择一组元素的美元( textit{ 命令} $ $ ), 以最大限度地实现不同亚模式功能的线性组合。 首先, 使用减法将子模式功能最大化, 并且根据一个选择模式, 我们给出一个最合适的 $( 1/ / e\ right) $- a Applection 。 平台不仅关心用户的参与, 也关心不同用户组的多样化, 也就是保证每个组购买的某种可能性。 我们用一个特殊选项来描述一个可实现的双版本的双版本( ) 双版本/ 双版本的周期性版本。 我们用一个特殊的双版本的双版/ 版本的版本的版本的版本的版本的版本的版本的版本化的版本的版本的版本的版本, 版本的版本的版本的版本的版本的版本的版本的版本的版本的版本化的版本化的版本化的版本的版本的版本化的版本的版本的版本, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月4日
Arxiv
0+阅读 · 2022年12月3日
Arxiv
0+阅读 · 2022年11月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员