This article introduces a dynamic spatiotemporal stochastic volatility (SV) model with explicit terms for the spatial, temporal, and spatiotemporal spillover effects. Moreover, the model includes time-invariant site-specific constant log-volatility terms. Thus, this formulation allows to distinguish between spatial and temporal interactions, while each location may have a different volatility level. We study the statistical properties of an outcome variable under this process and show that it introduces spatial dependence in the outcome variable. Further, we present a Bayesian estimation procedure based on the Markov Chain Monte Carlo (MCMC) approach using a suitable data transformation. After providing simulation evidence on the proposed Bayesian estimator's performance, we apply the model in a highly relevant field, namely environmental risk modeling. Even though there are only a few empirical studies on environmental risks, previous literature undoubtedly demonstrated the importance of climate variation studies. For example, for local air quality in Northern Italy in 2021, we show pronounced spatial and temporal spillovers and larger uncertainties/risks during the winter season compared to the summer season.
翻译:本条引入了一个动态的时空随机波动模型,对空间、时间和时空外溢效应有明确的术语。此外,该模型还包括时间变化地点特有的常态日志挥发性术语。因此,这一配方可以区分空间和时间互动,而每个地点可能具有不同的波动程度。我们在此过程中研究了结果变量的统计属性,并表明其在结果变量中引入了空间依赖性。此外,我们采用适当的数据转换方法,根据Markov 链子蒙特卡洛(MCMC)方法,提出了贝叶斯估计程序。在提供了拟议拜叶斯估计仪的模拟性能之后,我们将模型应用于一个非常相关的领域,即环境风险模型。尽管关于环境风险的经验研究不多,但以前的文献无疑证明了气候变异研究的重要性。例如,2021年意大利北部当地空气质量方面,我们展示了与夏季相比冬季明显的空间和时间外溢效应以及更大的不确定性/风险。