Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting. We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we optimize a randomly-initialized CNN model to reconstruct a depth map restored by virtue of using the CNN network structure as a prior combined with a view-constrained photo-consistency loss. This loss is computed using images from a geometrically calibrated camera from nearby viewpoints. We apply this deep depth prior for inpainting and refining incomplete and noisy depth maps within both binocular and multi-view stereo pipelines. Our quantitative and qualitative evaluation shows that our refined depth maps are more accurate and complete, and after fusion, produces dense 3D models of higher quality.
翻译:最近的工作表明,进化神经网络(CNNs)的结构在自然图像之前会产生强烈的自然图像。 此前, 被称为前深图像( DIP ), 是一个有效的常规化器, 反向问题, 如图像除色和涂色。 我们将DIP的概念扩大到深度图像。 鉴于彩色图像以及吵闹和不完整的目标深度地图, 我们优化了随机初始的CNN模型, 以重建通过使用CNN网络结构而恢复的深度地图, 在此之前, 与受视觉限制的相容性损失相结合。 这一损失是使用附近几何校准相机的图像来计算的。 我们应用了这一深度, 在双筒和多视图立体管道内对不完整和吵闹的深度地图进行油漆和完善。 我们的定量和定性评估显示, 我们精细的深度地图更加准确和完整, 在熔化后, 产生密度高的 3D 3D 模型 质量 。