We derive strong mixing conditions for many existing discrete-valued time series models that include exogenous covariates in the dynamic. Our main contribution is to study how a mixing condition on the covariate process transfers to a mixing condition for the response. Using a coupling method, we first derive mixing conditions for some Markov chains in random environments, which gives a first result for some autoregressive categorical processes with strictly exogenous regressors. Our result is then extended to some infinite memory categorical processes. In the second part of the paper, we study autoregressive models for which the covariates are sequentially exogenous. Using a general random mapping approach on finite sets, we get explicit mixing conditions that can be checked for many categorical time series found in the literature, including multinomial autoregressive processes, ordinal time series and dynamic multiple choice models. We also study some autoregressive count time series using a somewhat different contraction argument. Our contribution fill an important gap for such models, presented here under a more general form, since such a strong mixing condition is often assumed in some recent works but no general approach is available to check it.


翻译:我们为许多现有的离散、有不同价值的时间序列模型得出了强大的混合条件,这些模型包括动态中的外源共变。我们的主要贡献是研究共变过程的混合条件如何转移到响应的混合条件。我们首先采用混合方法,在随机环境中为某些Markov链获取混合条件,这为某些带有严格外源反向回归器的自动递减绝对进程提供了第一个结果。我们的结果随后扩大到一些无限的内存绝对进程。在本文第二部分中,我们研究了这些共变相相相相依为外源的自动递减模型。我们采用对定数组的一般随机绘图方法,获得明确的混合条件,可以检查文献中发现的许多绝对时间序列,包括多数值自动递减进程、恒定时间序列和动态的多重选择模型。我们还利用某种不同的收缩论来研究一些自递递递减时间序列。我们的贡献填补了这些模型的一个重要空白,以较笼统的形式提出,因为这种强的混合条件常常被假定为最近的一些作品所假定,但是没有一般的办法加以核查。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
34+阅读 · 2020年9月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
34+阅读 · 2020年9月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员