We derive strong mixing conditions for many existing discrete-valued time series models that include exogenous covariates in the dynamic. Our main contribution is to study how a mixing condition on the covariate process transfers to a mixing condition for the response. Using a coupling method, we first derive mixing conditions for some Markov chains in random environments, which gives a first result for some autoregressive categorical processes with strictly exogenous regressors. Our result is then extended to some infinite memory categorical processes. In the second part of the paper, we study autoregressive models for which the covariates are sequentially exogenous. Using a general random mapping approach on finite sets, we get explicit mixing conditions that can be checked for many categorical time series found in the literature, including multinomial autoregressive processes, ordinal time series and dynamic multiple choice models. We also study some autoregressive count time series using a somewhat different contraction argument. Our contribution fill an important gap for such models, presented here under a more general form, since such a strong mixing condition is often assumed in some recent works but no general approach is available to check it.
翻译:我们为许多现有的离散、有不同价值的时间序列模型得出了强大的混合条件,这些模型包括动态中的外源共变。我们的主要贡献是研究共变过程的混合条件如何转移到响应的混合条件。我们首先采用混合方法,在随机环境中为某些Markov链获取混合条件,这为某些带有严格外源反向回归器的自动递减绝对进程提供了第一个结果。我们的结果随后扩大到一些无限的内存绝对进程。在本文第二部分中,我们研究了这些共变相相相相依为外源的自动递减模型。我们采用对定数组的一般随机绘图方法,获得明确的混合条件,可以检查文献中发现的许多绝对时间序列,包括多数值自动递减进程、恒定时间序列和动态的多重选择模型。我们还利用某种不同的收缩论来研究一些自递递递减时间序列。我们的贡献填补了这些模型的一个重要空白,以较笼统的形式提出,因为这种强的混合条件常常被假定为最近的一些作品所假定,但是没有一般的办法加以核查。