Decades of practices of ramp metering, by controlling downstream volume and smoothing the interweaving traffic, have proved that ramp metering can decrease total travel time, mitigate shockwaves, decrease rear-end collisions, reduce pollution, etc. Besides traditional methods like ALIENA algorithms, Deep Reinforcement Learning algorithms have been established recently to build finer control on ramp metering. However, those Deep Learning models may be venerable to adversarial attacks. Thus, it is important to investigate the robustness of those models under False Data Injection adversarial attack. Furthermore, algorithms capable of detecting anomaly data from clean data are the key to safeguard Deep Learning algorithm. In this study, an online algorithm that can distinguish adversarial data from clean data are tested. Results found that in most cases anomaly data can be distinguished from clean data, although their difference is too small to be manually distinguished by humans. In practice, whenever adversarial/hazardous data is detected, the system can fall back to a fixed control program, and experts should investigate the detectors status or security protocols afterwards before real damages happen.


翻译:通过控制下游容量和平滑交织交通,测量坡道的做法已经证明,测量坡道可以减少总旅行时间,减轻冲击波,减少后端碰撞,减少污染等。 除了ALIENA算法等传统方法外,最近还建立了深强化学习算法,以建立坡道测量的更细的控制。然而,这些深学习模型可能可被对抗性攻击所重视。因此,在虚假数据输入对抗性攻击中,调查这些模型的稳健性非常重要。此外,能够从清洁数据中探测异常数据的算法是保护深层学习算法的关键。在本研究中,测试了能够区分对抗性数据和清洁数据的在线算法。结果发现,在大多数情况下,异常数据可以与清洁数据区分开来,尽管其差异太小,无法被人类人工区分。在实践中,一旦发现对抗性/危险数据,系统可以返回固定的控制程序,专家们应在实际损害发生之前调查探测器的地位或安全协议。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员