Model-reference adaptive systems refer to a consortium of techniques that guide plants to track desired reference trajectories. Approaches based on theories like Lyapunov, sliding surfaces, and backstepping are typically employed to advise adaptive control strategies. The resulting solutions are often challenged by the complexity of the reference model and those of the derived control strategies. Additionally, the explicit dependence of the control strategies on the process dynamics and reference dynamical models may contribute in degrading their efficiency in the face of uncertain or unknown dynamics. A model-reference adaptive solution is developed here for autonomous systems where it solves the Hamilton-Jacobi-Bellman equation of an error-based structure. The proposed approach describes the process with an integral temporal difference equation and solves it using an integral reinforcement learning mechanism. This is done in real-time without knowing or employing the dynamics of either the process or reference model in the control strategies. A class of aircraft is adopted to validate the proposed technique.
翻译:模型参考自适应系统是一组技术,用于引导系统跟踪所需的参考轨迹。通常采用基于Lyapunov、滑移面和倒装等理论的方法来指导自适应控制策略。由此产生的解决方案常常受到参考模型和所得控制策略复杂性的挑战。此外,控制策略明确依赖于过程动力学和参考动态模型,可能会降低在不确定或未知动态的情况下的效率。本文针对自主系统开发了一种模型参考自适应解决方案,它解决了基于误差结构的Hamilton-Jacobi-Bellman方程。所提出的方法用积分时间差分方程描述过程,并使用积分强化学习机制进行求解。这是实时完成的,而不需要在控制策略中知道或使用过程或参考模型的动态。采用了一类飞机来验证所提出的技术。