We recover the gradient of a given function defined on interior points of a submanifold with boundary of the Euclidean space based on a (normally distributed) random sample of function evaluations at points in the manifold. This approach is based on the estimates of the Laplace-Beltrami operator proposed in the theory of Diffusion-Maps. Analytical convergence results of the resulting expansion are proved, and an efficient algorithm is proposed to deal with non-convex optimization problems defined on Euclidean submanifolds. We test and validate our methodology as a post-processing tool in Cryogenic electron microscopy (Cryo-EM). We also apply the method to the classical sphere packing problem.
翻译:我们根据(通常分布的)对多个点的功能评价随机抽样,回收了在欧几里德空间边界的子网点上界定的某一功能的内部点上界定的某一功能的梯度。这一方法基于Diflpulation-Maps理论中提议的Laplace-Beltrami操作员的估计。结果扩大的分析一致结果得到证明,并提出了一种有效的算法,以处理在欧几里德子网上界定的非convex优化问题。我们测试和验证我们的方法,将其作为低温电子显微镜(Cryo-EM)的后处理工具。我们还将这种方法应用于典型的球体包装问题。