This chapter describes how gradient flows and nonlinear power methods in Banach spaces can be used to solve nonlinear eigenvector-dependent eigenvalue problems, and how convergence of (discretized) approximations can be verified. We review several flows from literature, which were proposed to compute nonlinear eigenfunctions, and show that they all relate to normalized gradient flows. Furthermore, we show that the implicit Euler discretization of gradient flows gives rise to a nonlinear power method of the proximal operator and prove their convergence to nonlinear eigenfunctions. Finally, we prove that $\Gamma$-convergence of functionals implies convergence of their ground states, which is important for discrete approximations.


翻译:本章描述Banach 空间的梯度流和非线性电力方法如何用于解决非线性电子元值依赖性电子元值问题,以及如何核实(分解的)近似的趋同性。我们审查了文献中的一些流程,这些流程旨在计算非线性电子元件,并表明它们都与正常的梯度流有关。此外,我们表明,梯度流的隐性电极分解产生了准线性操作员的非线性电源方法,并证明了它们与非线性电子元件的趋同性。最后,我们证明,用$\Gamma$-converggging of 函数的趋同性意味着它们的地面状态的趋同性,这对于离散性近光体十分重要。

0
下载
关闭预览

相关内容

【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员