Many clustering algorithms are guided by certain cost functions such as the widely-used $k$-means cost. These algorithms divide data points into clusters with often complicated boundaries, creating difficulties in explaining the clustering decision. In a recent work, Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020) introduced explainable clustering, where the cluster boundaries are axis-parallel hyperplanes and the clustering is obtained by applying a decision tree to the data. The central question here is: how much does the explainability constraint increase the value of the cost function? Given $d$-dimensional data points, we show an efficient algorithm that finds an explainable clustering whose $k$-means cost is at most $k^{1 - 2/d}\,\mathrm{poly}(d\log k)$ times the minimum cost achievable by a clustering without the explainability constraint, assuming $k,d\ge 2$. Taking the minimum of this bound and the $k\,\mathrm{polylog} (k)$ bound in independent work by Makarychev-Shan (ICML 2021), Gamlath-Jia-Polak-Svensson (2021), or Esfandiari-Mirrokni-Narayanan (2021), we get an improved bound of $k^{1 - 2/d}\,\mathrm{polylog}(k)$, which we show is optimal for every choice of $k,d\ge 2$ up to a poly-logarithmic factor in $k$. For $d = 2$ in particular, we show an $O(\log k\log\log k)$ bound, improving near-exponentially over the previous best bound of $O(k\log k)$ by Laber and Murtinho (ICML 2021).
翻译:许多群集算法以某些成本函数为指导, 如广泛使用的 $k$- 平均成本 。 这些算法将数据点分为往往复杂、 难以解释群集决定的群集 。 在最近的一项工作中, Dasgupta、 Frost、 Moshhokovitz 和 Rashtchian (ICML 2020) 引入了可解释的群集, 群集边界是轴- 双极超机, 集群是通过对数据应用决定树来获得的 。 这里的中心问题是 : 可解释性限制能增加成本函数的值有多大? 鉴于 $d- 平面数据点, 我们展示一个高效的算法, 找到一个可以解释的群集, 其美元平均成本最多为 $k+1 - 2/ d ⁇, most\ mathrik 。 假设是 $k, dgeo, 20, 和 malk- mol- max, 以 美元( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元-