Robotic tree pruning requires highly precise manipulator control in order to accurately align a cutting implement with the desired pruning point at the correct angle. Simultaneously, the robot must avoid applying excessive force to rigid parts of the environment such as trees, support posts, and wires. In this paper, we propose a hybrid control system that uses a learned vision-based controller to initially align the cutter with the desired pruning point, taking in images of the environment and outputting control actions. This controller is trained entirely in simulation, but transfers easily to real trees via a neural network which transforms raw images into a simplified, segmented representation. Once contact is established, the system hands over control to an interaction controller that guides the cutter pivot point to the branch while minimizing interaction forces. With this simple, yet novel, approach we demonstrate an improvement of over 30 percentage points in accuracy over a baseline controller that uses camera depth data.
翻译:机械树的剪裁需要非常精确的操控器控制, 以便精确地将剪切执行与正确角度的剪切点相匹配。 同时, 机器人必须避免对树木、 支持柱子和电线等硬环境部分施加过度的武力 。 在本文中, 我们提出一个混合控制系统, 使用一个以视觉为基础的智能控制器, 将剪切器与理想的剪切点相匹配, 摄取环境图像和输出控制动作 。 该控制器完全接受模拟训练, 但通过神经网络将原始图像转换成简化的、 分解的表示器很容易地传输到真实的树上 。 一旦连接确定, 系统将控制权交给一个交互控制器, 引导切切分点到分支, 同时尽量减少交互力 。 使用这个简单但新颖的方法, 我们显示比使用摄像深度数据的基线控制器的精度提高了超过 30 个百分点 。