In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method recently developed in [26] by the authors. Under some suitable assumptions, an \emph{operation complexity} of ${\cal O}(\varepsilon^{-4}\log\varepsilon^{-1})$, measured by its fundamental operations, is established for the first-order augmented Lagrangian method for finding an $\varepsilon$-KKT solution of the constrained minimax problems.
翻译:在本文中,我们研究了一组受限制的小麦问题。特别是,我们建议了一种第一级强化拉格朗加方法来解决这些问题,其次问题被证明是一个简单得多的结构小麦问题,并且通过作者最近在[26] 中制定的第一级方法得到了适当的解决。 根据一些适当的假设,以其基本操作来衡量,为第一级强化的拉格朗加方法确定了一种美元(affrepsilon-kkT)的操作复杂性,即按其基本操作衡量的美元(varepsilon ⁇ -4 ⁇ log\varepsilon}-1美元),用以寻找一个用美元-kKT来解决受限制的小麦问题的办法。