Inductive inference in supervised classification context constitutes to methods and approaches to assign some objects or items into different predefined classes using a formal rule that is derived from training data and possibly some additional auxiliary information. The optimality of such an assignment varies under different conditions due to intrinsic attributes of the objects being considered for such a task. One of these cases is when all the objects' features are discrete variables with a priori known categories. As another example, one can consider a modification of this case with a priori unknown categories. These two cases are the main focus of this thesis and based on Bayesian inductive theories, de Finetti type exchangeability is a suitable assumption that facilitates the derivation of classifiers in the former scenario. On the contrary, this type of exchangeability is not applicable in the latter case, instead, it is possible to utilise the partition exchangeability due to John Kingman. These two types of exchangeabilities are discussed and furthermore here I investigate inductive supervised classifiers based on both types of exchangeabilities. I further demonstrate that the classifiers based on de Finetti type exchangeability can optimally handle test items independently of each other in the presence of infinite amounts of training data while on the other hand, classifiers based on partition exchangeability still continue to benefit from joint labelling of all the test items. Additionally, it is shown that the inductive learning process for the simultaneous classifier saturates when the amount of test data tends to infinity.


翻译:监督分类的诱导推论是指使用来自培训数据的正式规则以及可能的额外辅助信息,将某些物体或物品分配到不同预设类别的方法和办法,这些方法和方法是使用来自培训数据的正式规则以及可能的额外辅助信息,这种分配的最佳性在不同条件下各不相同,因为所考虑的物体的内在特性,这种任务的内在特性不同。其中一种情况是,所有物体的特性都是离散的变量,具有先知的类别。另一个例子是,可以考虑用先知的未知类别来修改这个案件。这两个案例是这一理论的主要焦点,并基于巴耶斯的隐含理论。 de Finetty型互换性是一个适当的假设,有利于在前一种情况中产生分类者。相反,这种类型的互换性因不同条件而不同,在后一种情况中不适用,因此有可能利用约翰·金曼的分置互换性。讨论这两种类型的互换性,此外,我还可以根据两种互换性类型调查内含性的监督性分类。我还进一步证明,基于不精度型易互换性的分类方法的分类者可以最佳地处理前一种假设项目。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
110+阅读 · 2020年2月5日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员