It is often of interest to make inference on an unknown function that is a local parameter of the data-generating mechanism, such as a density or regression function. Such estimands can typically only be estimated at a slower-than-parametric rate in nonparametric and semiparametric models, and performing calibrated inference can be challenging. In many cases, these estimands can be expressed as the minimizer of a population risk functional. Here, we propose a general framework that leverages such representation and provides a nonparametric extension of the score test for inference on an infinite-dimensional risk minimizer. We demonstrate that our framework is applicable in a wide variety of problems. As both analytic and computational examples, we describe how to use our general approach for inference on a mean regression function under (i) nonparametric and (ii) partially additive models, and evaluate the operating characteristics of the resulting procedures via simulations.
翻译:通常需要推断出一个未知的函数,该函数是生成数据机制的局部参数,例如密度或回归函数。这种估计值通常只能以低于参数的速度估算,在非对数和半对数模型中,执行经校准的推论可能具有挑战性。在许多情况下,这些估计值可以表示为人口风险功能的最小化。在这里,我们提出一个总框架,利用这种表示法,并提供分数测试的非参数延伸值,用以推断无限风险最小化。我们证明,我们的框架适用于广泛的问题。作为分析和计算的例子,我们说明如何使用我们的一般方法,在(一) 非参数和(二) 部分添加模型下推断平均回归函数的推论,并通过模拟评估由此产生的程序的操作特征。