It is often of interest to make inference on an unknown function that is a local parameter of the data-generating mechanism, such as a density or regression function. Such estimands can typically only be estimated at a slower-than-parametric rate in nonparametric and semiparametric models, and performing calibrated inference can be challenging. In many cases, these estimands can be expressed as the minimizer of a population risk functional. Here, we propose a general framework that leverages such representation and provides a nonparametric extension of the score test for inference on an infinite-dimensional risk minimizer. We demonstrate that our framework is applicable in a wide variety of problems. As both analytic and computational examples, we describe how to use our general approach for inference on a mean regression function under (i) nonparametric and (ii) partially additive models, and evaluate the operating characteristics of the resulting procedures via simulations.


翻译:通常需要推断出一个未知的函数,该函数是生成数据机制的局部参数,例如密度或回归函数。这种估计值通常只能以低于参数的速度估算,在非对数和半对数模型中,执行经校准的推论可能具有挑战性。在许多情况下,这些估计值可以表示为人口风险功能的最小化。在这里,我们提出一个总框架,利用这种表示法,并提供分数测试的非参数延伸值,用以推断无限风险最小化。我们证明,我们的框架适用于广泛的问题。作为分析和计算的例子,我们说明如何使用我们的一般方法,在(一) 非参数和(二) 部分添加模型下推断平均回归函数的推论,并通过模拟评估由此产生的程序的操作特征。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Inference for Low-Rank Models
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员